An Invitation to Tropical Alexandrov Curvature

  • Carlos Amendola (MPI MiS, Leipzig)
E1 05 (Leibniz-Saal)


We study Alexandrov curvature in the tropical projective torus with respect to the tropical metric. Alexandrov curvature is a generalization of classical Riemannian sectional curvature to more general metric spaces; it is determined by a comparison of triangles in an arbitrary metric space to corresponding triangles in Euclidean space. In the polyhedral setting of tropical geometry, triangles are a combinatorial object, which adds a combinatorial dimension to our analysis. We study the effect that the triangle types have on curvature, and what can be revealed about these types from the curvature. Our results are established both by proof and numerical experiments, and shed light on the intricate geometry of the tropical projective torus. This is joint work with Anthea Monod.

Mirke Olschewski

MPI for Mathematics in the Sciences Contact via Mail