We have decided to discontinue the publication of preprints on our preprint server end of 2024. The publication culture within mathematics has changed so much due to the rise of repositories such as ArXiV (www.arxiv.org) that we are encouraging all institute members to make their preprints available there. An institute's repository in its previous form is, therefore, unnecessary. The preprints published to date will remain available here, but we will not add any new preprints here.
In 1873, Schlaefli discussed the local isometric embedding of Riemannian manifolds in Euclidean spaces. He conjectured that a sufficiently small neighborhood in any
The conjecture by Schlaefli for smooth manifolds had remained open for an extended period of time, even for 2-dimensional manifolds, or surfaces. The following conjecture was reposed by Yau in 1980s and 1990s: any smooth surface always has a local smooth isometric embedding in
In this note, we shall present in a systematic way the results concerning the local isometric embedding of surfaces in
In order to establish the local isometric embedding, we need to prove the existence of local solutions to either Darboux equation or Gauss-Codazzi system. Both are nonlinear equations, fully nonlinear for the former and quasilinear for the latter. A crucial step here is to study the linearized equations and derive a priori estimates. Such linear equations are elliptic if Gauss curvature is positive, hyperbolic if Gauss curvature negative, and of the mixed type if Gauss curvature changes its sign. Moreover, the linearized equations are degenerate where Gauss curvature vanishes. In this note, we shall distinguish these cases and study metrics with Gauss curvature which is positive, negative, nonnegative, nonpositive, or of the mixed sign. Considering the nature of the linearized equations, it is necessary to treat different cases separately. It is unlikely that there exists a unified approach.
The topic of the local isometric embedding of surfaces in