

Preprint 20/2004
Global Existence for Nonconvex Thermoelasticity
Marc Oliver Rieger and Johannes Zimmer
Contact the author: Please use for correspondence this email.
Submission date: 19. Apr. 2004
published in: Advances in mathematical sciences and applications, 15 (2005) 2, p. 559-569
Bibtex
MSC-Numbers: 35Q72, 74B20
Download full preprint: PDF (146 kB), PS ziped (282 kB)
Abstract:
We prove global existence for a
simplified model of one-dimensional thermoelasticity. The governing
equations satisfy the balance of momentum and a modified energy
balance. The application we wish to study by investigating this model
are shape-memory alloys. They are a prominent example of solids
undergoing structural phase transitions. A characteristic feature of
these materials is that several crystalline variants are stable at low
temperature. Consequently, the free energy considered here is
nonconvex as a function of the deformation gradient for temperatures
below a fixed threshold temperature. As a result of the nonconvexity
of the free energy density, existence of weak solutions is not to be
generally expected. We therefore show existence of a Young measure
valued solution. The proof relies on vanishing capillarity.