Preprint 54/2005

Rigorous derivation of Föppl's theory for clamped elastic membranes leads to relaxation

Sergio Conti, Francesco Maggi, and Stefan Müller

Contact the author: Please use for correspondence this email.
Submission date: 07. Jun. 2005
Pages: 24
published in: SIAM journal on mathematical analysis, 38 (2006) 2, p. 657-680 
DOI number (of the published article): 10.1137/050632567
Download full preprint: PDF (276 kB), PS ziped (231 kB)

We consider the nonlinear elastic energy of a thin membrane whose boundary is kept fixed, and assume that the energy per unit volume scales as formula3, with h the film thickness and formula7. We derive, by means of Gamma convergence, a limiting theory for the scaled displacements, which takes a form similar to the one proposed by Föppl in 1907. The difference can be understood as due to the fact that we fully incorporate the possibility of buckling, and hence derive a theory which does not have any resistence to compression. If forces normal to the membrane are included, then our result predicts that the normal displacement scales as the cube root of the force. This scaling depends crucially on the clamped boundary conditions. Indeed, if the boundary is left free then a much softer response is obtained, as was recently shown by Friesecke, James and Müller.

23.06.2018, 02:11