Preprint 53/2006

About solutions of Poisson's equation with transition condition in non-smooth domains

Anja Schlömerkemper

Contact the author: Please use for correspondence this email.
Submission date: 31. May. 2006
Pages: 31
published in: Zeitschrift fuer Analysis und ihre Anwendungen, 27 (2008) 3, p. 253-281 
DOI number (of the published article): 10.4171/ZAA/1354
Bibtex
MSC-Numbers: 35J05, 31A10, 31B10, 78A30
Keywords and phrases: Poisson equation with transition condition, integral representations of solutions, derivatives of single layer potentials, regularization of potentials, magnetostatics
Download full preprint: PDF (330 kB)

Abstract:
Starting from integral representations of solutions of Poisson's equation with transition condition, we study the first and second derivatives of these solutions for all dimensions formula3. This involves derivatives of single layer potentials and Newton potentials, which we regularize smoothly. On smooth parts of the boundary of the non-smooth domains under consideration, the convergence of the first derivative of the solution is uniform; this is well known in the literature for regularizations using a sharp cut-off by balls. Close to corners etc. we prove convergence in formula5 with respect to the surface measure. Furthermore we show that the second derivative of the solution is in formula5 on the bulk.

The interface problem studied in this article is obtained from the stationary Maxwell equations in magnetostatics and was initiated by work on magnetic forces.

23.06.2018, 02:11