Search

MiS Preprint Repository

We have decided to discontinue the publication of preprints on our preprint server as of 1 March 2024. The publication culture within mathematics has changed so much due to the rise of repositories such as ArXiV (www.arxiv.org) that we are encouraging all institute members to make their preprints available there. An institute's repository in its previous form is, therefore, unnecessary. The preprints published to date will remain available here, but we will not add any new preprints here.

MiS Preprint
42/2008

The silencing of neuronal activity by noise and the phenomenon of inverse stochastic resonance

Boris Gutkin, Jürgen Jost and Henry Tuckwell

Abstract

Neurons in the central nervous system are affected by complex and noisy signals due to fluctuations in their cellular environment and in the inputs they receive from many other cells. Such noise usually increases the probability that a neuron will send out a signal to its target cells. In stochastic resonance, which occurs in many physical and biological systems, an optimal response is found at a particular noise amplitude. We have found that in a classical neuronal model the opposite can occur - that noise can subdue or turn off repetitive neuronal activity in both single cells and networks of cells. Recent experiments on regularly firing neurons with noisy inputs confirm these predictions. Surprisingly, we find that in some cases there is a noise level at which the response is a minimum, a phenomenon which is called inverse stochastic resonance. Suppression of rhythmic behavior by noise and inverse stochastic resonance are predicted to occur not only in neuronal systems but more generally in diverse nonlinear dynamical systems where a stable limit cycle is attainable from a stable rest state.

Received:
May 7, 2008
Published:
May 28, 2008

Related publications

Preprint
2008 Repository Open Access
Boris Gutkin, Jürgen Jost and Henry C. Tuckwell

The silencing of neuronal activity by noise and the phenomenon of inverse stochastic resonance