

Preprint 72/2008
Maximum principle and gradient estimates for stationary solutions of the Navier-Stokes equations; a computer aided investigation
Robert Finn, Abderrahim Ouazzi, and Stefan Turek
Contact the author: Please use for correspondence this email.
Submission date: 22. Oct. 2008
published in: Advances in mathematical fluid mechanics : dedicated to Giovanni Paolo Galdi on the occasion of his 60th birthday / R. Rannacher ... (eds.)
Berlin [u. a.] : Springer, 2010. - P. 253 - 269
DOI number (of the published article): 10.1007/978-3-642-04068-9 15
Bibtex
with the following different title: Maximum principle and gradient estimates for stationary solutions of the Navier-Stokes equations : a partly numerical investigation
Abstract:
Summary. We calculate numerically the solutions of the stationary Navier-Stokes
equations in two dimensions, for a square domain with particular choices of boundary
data. The data are chosen to test whether bounded disturbances on the boundary
can be expected to spread into the interior of the domain. The results indicate that
such behavior indeed can occur, but suggest an estimate of general form for the
magnitudes of the solution and of its derivatives, analogous to classical bounds for
harmonic functions.
The qualitative behavior of the solutions we found displayed some striking and
unexpected features. As a corollary of the study, we obtain two new examples of
non-uniqueness for stationary solutions at large Reynolds numbers.