

Preprint 52/2009
Variational Calculus with Sums of Elementary Tensors of Fixed Rank
Mike Espig, Wolfgang Hackbusch, Thorsten Rohwedder, and Reinhold Schneider
Contact the author: Please use for correspondence this email.
Submission date: 28. Aug. 2009
Pages: 25
published in: Numerische Mathematik, 122 (2012) 3, p. 469-488
DOI number (of the published article): 10.1007/s00211-012-0464-x
Bibtex
Download full preprint: PDF (199 kB)
Abstract:
In this article we introduce a calculus of variations for sums of
elementary tensors and apply it to functionals of practical
interest. The survey provides all necessary ingredients for
applying minimization methods in a general setting. The important
cases of target functionals which are linear and quadratic with respect to the
tensor product are discussed, and combinations of these functionals are presented in
detail. As an example, we consider the solution of a linear system in structured tensor
format. Moreover, we discuss the solution of an eigenvalue problem with sums of elementary tensors.
This example can be viewed as a prototype of a constrained
minimization problem. For the numerical treatment, we suggest a
method which has the same order of complexity as the popular
alternating least square algorithm and demonstrate the rate of convergence in numerical tests.