

Preprint 32/2011
On delay-induced stability in diffusively coupled discrete-time systems
Fatihcan M. Atay
Contact the author: Please use for correspondence this email.
Submission date: 06. Jun. 2011
Pages: 13
published in: Afrika matematika, 23 (2012) 1, p. 109-119
DOI number (of the published article): 10.1007/s13370-011-0024-z
Bibtex
MSC-Numbers: 39A30, 94C15, 05C22
Keywords and phrases: delay, stability, Signed graph, synchronization, chaos
Download full preprint: PDF (311 kB)
Abstract:
The stability of networked systems is considered under time-delayed diffusive coupling. Necessary conditions for stability are given for general directed and weighted networks with both positive and negative weights. Exact stability conditions are obtained for undirected networks with nonnegative weights, and it is shown that the largest eigenvalue of the graph Laplacian determines the effect of the connection topology on stability. It is further shown that the stability region in the parameter space shrinks with increasing values of the largest eigenvalue, or of the time delay of the same parity. In particular, unstable fixed points of the individual
maps can be stabilized for certain parameter ranges when they are coupled with an odd time delay, provided that the connection structure is not bipartite. Furthermore, signal propagation delays are compared to signal processing delays and it is shown that delay-induced stability cannot occur for the latter. Connections to
continuous-time systems are indicated.