

Preprint 62/2011
Efficient Analysis of High Dimensional Data in Tensor Formats
Mike Espig, Wolfgang Hackbusch, Alexander Litvinenko, Hermann G. Matthies, and Elmar Zander
Contact the author: Please use for correspondence this email.
Submission date: 22. Sep. 2011 (revised version: October 2011)
Pages: 21
published in: Sparse grids and applications / J. Garcke ... (eds.)
Berlin : Springer, 2013. - P. 31 - 56
(Lecture notes in computational science and engineering ; 88)
DOI number (of the published article): 10.1007/978-3-642-31703-3_2
Bibtex
Download full preprint: PDF (793 kB)
Abstract:
In this article we introduce new methods for the analysis of high
dimensional data in tensor formats, where the underling data come from
the stochastic elliptic boundary value problem. After discretisation of
the deterministic operator as well as the presented random fields
via KLE and PCE, the obtained high dimensional operator can be
approximated via sums of elementary tensors. This tensors
representation can be effectively used for computing different
values of interest, such as maximum norm, level sets and cumulative
distribution function. The basic concept of the data analysis in
high dimensions is discussed on tensors represented in the canonical
format, however the approach can be easily used in other tensor
formats. As an intermediate step we describe efficient iterative
algorithms for computing the characteristic and sign functions as
well as pointwise inverse in the canonical tensor format. Since
during majority of algebraic operations as well as during iteration
steps the representation rank grows up, we use lower-rank
approximation and inexact recursive iteration schemes.