We have decided to discontinue the publication of preprints on our preprint server end of 2024. The publication culture within mathematics has changed so much due to the rise of repositories such as ArXiV (www.arxiv.org) that we are encouraging all institute members to make their preprints available there. An institute's repository in its previous form is, therefore, unnecessary. The preprints published to date will remain available here, but we will not add any new preprints here.
We use a standard discrete-time linear Gaussian model to analyze information storage capability of individual nodes in complex networks, given network structure and link weights. In particular, we investigate the role of two and three-node motifs in contributing to information storage. We show analytically that directed feedback loops and feedforward loop motifs are the dominant contributors to information storage capability, and show the direct relationship between clustering coefficient(s) and information storage. These results explain the dynamical importance of clustered structure, and offer an explanation for the prevalence of these motifs in biological and artificial networks.