Preprint 49/2013

Critical manifold of globally coupled overdamped anharmonic oscillators driven by additive Gaussian white noise

Rüdiger Kürsten, Susanne Gütter, and Ulrich Behn

Contact the author: Please use for correspondence this email.
Submission date: 15. May. 2013
Pages: 16
published in: Physical review / E, 88 (2013) 2, art-no. 022114 
DOI number (of the published article): 10.1103/PhysRevE.88.022114
Bibtex
PACS-Numbers: 02.50.-r, 05.40.-a, 05.70.Jk
Download full preprint: PDF (665 kB)

Abstract:
We prove for an infinite array of globally coupled overdamped anharmonic oscillators subject to additive Gaussian white noise the existence of a well-behaved critical manifold in the parameter space which separates a symmetric phase from a symmetry broken phase. Given two of the system parameters there is an unique critical value of the third. The proof exploits that the critical control parameter ac is bounded by its limit values for weak and for strong noise. In these limits the mechanism of symmetry breaking differs. For weak noise the distribution is Gaussian and the symmetry is broken as the whole distribution is shifted in either the positive or the negative direction. For strong noise there is a symmetric double-peak distribution and the symmetry is broken as the weights of the peaks become different. We derive an ordinary differential equation whose solution describes the critical manifold. Using a series ansatz to solve this differential equation we determine the critical manifold for weak and for strong noise and compare it to numerical results. We derive analytic expressions for the order parameter and the susceptibility close to the critical manifold.

23.06.2018, 02:12