

Preprint 31/2017
Bubbling analysis for approximate Lorentzian harmonic maps from Riemann surfaces
Xiaoli Han, Jürgen Jost, Lei Liu, and Liang Zhao
Contact the author: Please use for correspondence this email.
Submission date: 04. May. 2017
Pages: 36
published in: Calculus of variations and partial differential equations, 56 (2017) 6, art-no. 175
DOI number (of the published article): 10.1007/s00526-017-1271-0
Bibtex
Keywords and phrases: harmonic map, Lorentzian manifold, warped product, blow up, energy identity
Download full preprint: PDF (474 kB)
Abstract:
For a sequence of approximate harmonic maps (un,vn) (meaning that they satisfy the harmonic system up to controlled error terms) from a compact Riemann surface with smooth boundary to a standard static Lorentzian manifold with bounded energy, we prove that identities for the Lorentzian energy hold during the blow-up process. In particular, in the special case where the Lorentzian target metric is of the form gN − βdt2 for some Riemannian metric gN and some positive function β on N, we prove that such identities also hold for the positive energy (obtained by changing the sign of the negative part of the Lorentzian energy) and there is no neck between the limit map and the bubbles. As an application, we complete the blow-up picture of singularities for a harmonic map flow into a standard static Lorentzian manifold. We prove that the energy identities of the flow hold at both finite and infinite singular times. Moreover, the no neck property of the flow at infinite singular time is true.