Preprint 33/2017

Discovery of statistical equivalence classes using computer algebra

Christiane Görgen, Anna Bigatti, Eva Riccomagno, and Jim Q. Smith

Contact the author: Please use for correspondence this email.
Submission date: 26. May. 2017
Pages: 28
published in: International journal of approximate reasoning, 95 (2018), p. 167-184 
DOI number (of the published article): 10.1016/j.ijar.2018.01.003
Bibtex
Keywords and phrases: graphical models, staged tree models, computer algebra, ideal decomposition, algebraic statistics
Download full preprint: PDF (557 kB)

Abstract:
Discrete statistical models supported on labelled event trees can be specified using so-called interpolating polynomials which are generalizations of generating functions. These admit a nested representation. A new algorithm exploits the primary decom- position of monomial ideals associated with an interpolating polynomial to quickly compute all nested representations of that polynomial. It hereby determines an im- portant subclass of all trees representing the same statistical model. To illustrate this method we analyze the full polynomial equivalence class of a staged tree repre- senting the best fitting model inferred from a real-world dataset.

30.03.2018, 02:14