

Preprint 7/2018
Max-relative Entropy of Coherence: An Operational Coherence Measure
Kaifeng Bu, Uttam Singh, Shao-Ming Fei, Arun Kumar Pati, and Junde Wu
Contact the author: Please use for correspondence this email.
Submission date: 15. Jan. 2018
Pages: 14
published in: Physical review letters, 119 (2017) 15, art-no. 150405
DOI number (of the published article): 10.1103/PhysRevLett.119.150405
Bibtex
with the following different title: Maximum relative entropy of coherence : an operational coherence measure
Download full preprint: PDF (281 kB)
Abstract:
The operational characterization of quantum coherence is the corner stone in the development of resource theory of coherence.
We introduce a new coherence quantifier based on max-relative entropy. We prove that max-relative entropy of coherence is directly related to the maximum overlap with maximally coherent states under a particular class of operations, which provides an operational interpretation of max-relative entropy of coherence. Moreover, we show that, for any coherent state, there are examples of subchannel discrimination problems such that this coherent state allows for a higher probability of successfully discriminating subchannels than that of all incoherent states.
This advantage of coherent states in subchannel discrimination can be exactly
characterized by the max-relative entropy of coherence.
By introducing suitable smooth max-relative entropy of coherence,
we prove that the smooth max-relative entropy of coherence
provides a lower bound of one-shot coherence cost, and the max-relative entropy of
coherence is equivalent to the relative entropy of coherence in asymptotic limit.
Similar to max-relative entropy of coherence, min-relative entropy of coherence has also been investigated. We show that the min-relative entropy of coherence provides an upper bound of
one-shot coherence distillation, and in asymptotic limit the min-relative
entropy of coherence is equivalent to the relative entropy of coherence.