Preprint 107/2019

Duistermaat-Heckman measure and the mixture of quantum states

Lin Zhang, Yixin Jiang, and Junde Wu

Contact the author: Please use for correspondence this email.
Submission date: 28. Dec. 2019
Pages: 42
published in: Journal of physics / A, 52 (2019) 49, art-no. 495203 
DOI number (of the published article): 10.1088/1751-8121/ab5297
Bibtex
Keywords and phrases: Duistermaat-Heckman measure, random quantum state, coherence
Download full preprint: PDF (15041 kB)
Link to arXiv:See the arXiv entry of this preprint.

Abstract:
In this paper, we present a general framework to solve a fundamental problem in random matrix theory (RMT), i.e. the problem of describing the joint distribution of eigenvalues of the sum of two independent random Hermitian matrices and . Some considerations about the mixture of quantum states are basically subsumed into the above mathematical problem. Instead, we focus on deriving the spectral density of the mixture of adjoint orbits of quantum states in terms of the Duistermaat–Heckman measure, originated from the theory of symplectic geometry. Based on this method, we can obtain the spectral density of the mixture of independent random states. In particular, we obtain explicit formulas for the mixture of random qubits. We also find that, in the two-level quantum system, the average entropy of the equiprobable mixture of n random density matrices chosen from a random state ensemble (specified in the text) increases with the number n. Hence, as a physical application, our results quantitatively explain that the quantum coherence of the mixture monotonously decreases statistically as the number of components n in the mixture. Besides, our method may be used to investigate some statistical properties of a special subclass of unital qubit channels.

10.01.2020, 09:36