We have decided to discontinue the publication of preprints on our preprint server end of 2024. The publication culture within mathematics has changed so much due to the rise of repositories such as ArXiV (www.arxiv.org) that we are encouraging all institute members to make their preprints available there. An institute's repository in its previous form is, therefore, unnecessary. The preprints published to date will remain available here, but we will not add any new preprints here.
We develop a new concept of non-positive curvature for metric spaces, based on intersection patterns of closed balls. In contrast to the synthetic approaches of Alexandrov and Busemann, our concept also applies to metric spaces that might be discrete. The natural comparison spaces that emerge from our discussion are no longer Euclidean spaces, but rather tripod spaces. These tripod spaces include the hyperconvex spaces which have trivial Čech homology. This suggests a link of our geometrical method to the topological method of persistent homology employed in topological data analysis. We also investigate the geometry of general tripod spaces.