Search
Talk

Amplitude equations for stochastic Swift-Hohenberg equatio

  • Luigi Amedeo Bianchi (TU Berlin)
A3 01 (Sophus-Lie room)

Abstract

We consider a mathematical model for the Rayleigh-Benard convection, the stochastic Swift-Hohenberg equation: \[ \partial_t u = -(1+\partial_x^2)^2u+\varepsilon^2\nu u-u^3+\varepsilon^{\frac{3}{2}}\xi(t,x). \] Near its change of stability, the fluid's motion can be described in a multiscale setting as the product of a slowly varying amplitude equation and a faster periodic wave. After an introduction to the problem in its deterministic setting, we'll review some known stochastic results and see some recent developments in the unbounded space domain setting.

Upcoming Events of this Seminar

  • Monday, 14.07.25 tba with Alexandra Holzinger
  • Tuesday, 15.07.25 tba with Anna Shalova
  • Tuesday, 12.08.25 tba with Sarah-Jean Meyer
  • Friday, 15.08.25 tba with Thomas Suchanek
  • Friday, 22.08.25 tba with Nikolay Barashkov
  • Friday, 29.08.25 tba with Andreas Koller