Talk

An introduction to rough paths

  • Benjamin Fehrman
G3 10 (Lecture hall)

Abstract

The course will provide an introduction to the theory of rough paths. Loosely speaking, a rough path is a pair (Xt,Xt) which consists of a path Xt:=(Xt1,,Xtd)Cα([0,T];Rd) of low α-Hölder regularity enhanced by its iterated integrals Xti,j=:0tXsjdXsi. Since the iterated integrals on the righthand side of the formula above are not classically defined if α<12, their values are instead postulated by the generally non-unique matrix Xt; such as in the case of a Brownian motion enhanced by its Itô or Stratonovich integrals.

The foremost aim of the course will be to prove the well-posedness of rough differential equations dYt=f(Yt)dXt, and, in particular, the continuity of the solution with respect to the driving noise (Xt,Xt) as measured by the rough path metric. We will furthermore prove a deterministic Itô formula and Doob-Meyer decomposition for rough paths. Additional topics may include the signature of a rough path and applications to stochastic partial differential equations.

Date and time info
Tuesday 10:30 - 12:00

Keywords
rough path, rough differential equation

Prerequisites
calculus

Audience
MSc students, PhD students, Postdocs

Language
English

Remarks and notes
The course, while self-contained, will draw motivation and examples from probability theory and stochastic processes.
lecture
01.10.17 31.01.18

Regular lectures Winter semester 2017-2018 Regular lectures Winter semester 2017-2018

MPI for Mathematics in the Sciences / University of Leipzig see the lecture detail pages

Katharina Matschke

MPI for Mathematics in the Sciences Contact via Mail