Approximations of displacement interpolations by entropic interpolations

  • Christian Léonard (Paris Ouest University)
Felix-Klein-Hörsaal Universität Leipzig (Leipzig)


The Schrödinger problem is an entropy minimization problem on a set of path measures with prescribed initial and final marginals. It arises from a large deviation principle for the empirical measures of large particle systems. When the dynamics of the particles is slowed down while the prescribed marginals are unchanged, a second level large deviation phenomenon occurs. This leads to a sequence, indexed by the slowdown parameter, of Schrödinger problems which Gamma-converges to a dynamical optimal transport problem. We will illustrate these limits in the setting of L2 displacement interpolations on Rd and L1 displacement interpolations on graphs and Finsler manifolds.

Katja Heid

MPI for Mathematics in the Sciences Contact via Mail

Upcoming Events of This Seminar

  • Mar 12, 2024 tba with Theresa Simon
  • Mar 26, 2024 tba with Phan Thành Nam
  • Mar 26, 2024 tba with Dominik Schmid
  • May 7, 2024 tba with Manuel Gnann
  • May 14, 2024 tba with Barbara Verfürth
  • May 14, 2024 tba with Lisa Hartung
  • Jun 25, 2024 tba with Paul Dario
  • Jul 16, 2024 tba with Michael Loss