Combinatorial reciprocity theorems for generalized permutahedra, hypergraphs, and pruned inside-out polytopes
- Sophie Rehberg (Freie Universität Berlin)
Abstract
Generalized permutahedra are a class of polytopes with many interesting combinatorial subclasses. We introduce pruned inside-out polytopes, a generalization of inside-out polytopes introduced by Beck--Zaslavsky (2006), which have many applications such as recovering the famous reciprocity result for graph colorings by Stanley.
We study the integer point count of pruned inside-out polytopes by applying classical Ehrhart polynomials and Ehrhart--Macdonald reciprocity. This yields a geometric perspective on and a generalization of a combinatorial reciprocity theorem for generalized permutahedra by Aguiar--Ardila (2017) and Billera--Jia--Reiner (2009).
Applying this reciprocity theorem to hypergraphic polytopes allows us to give an arguably simpler proof of a recent combinatorial reciprocity theorem for hypergraph colorings by Aval--Karaboghossian--Tanasa (2020).