Search
Talk

Convergence rates for elliptic homogenization problems in Lipschitz domains

  • Qiang Xu (Peking University)
A3 01 (Sophus-Lie room)

Abstract

In this talk, I plan to study convergence rates in $L^2$ norm for elliptic homogenization problems in Lipschitz domains. It involves some new weighted-type inequalities for the smoothing operator at scale $\varepsilon$, as well as, layer and co-layer type estimates, and the related details will be touched. In order to obtain a sharp result, a duality argument will be imposed. Here we do not require any smoothness assumption on the coefficients, and the main ideas may be extended to other models, such as Stokes systems and parabolic systems, arising in the periodic homogenization theory.

Katja Heid

MPI for Mathematics in the Sciences Contact via Mail

Upcoming Events of This Seminar

  • Mar 11, 2024 tba with Carlos Román Parra
  • Mar 15, 2024 tba with Esther Bou Dagher