Workshop

Decomposition of the Möbius energy I: A decomposition theorem and Möbius invariance

  • Aya Ishizeki (Saitama University)
  • T. Nagasawa
G3 10 (Lecture hall)

Abstract

We consider the Möbius energy defined for a closed curve in Rn: M(\boldmath f)=(R/LZ)2(1\boldmath f(s1)\boldmath f(s2)Rn21D(\boldmath f(s1),\boldmath f(s2))2)ds1ds2. Here L is the length of closed curve, si's are arc-length parameters, and D is the distance along the curve.

In this talk we show that the energy can be decomposed into three parts: M(\boldmath f)=M1(\boldmath f)+M2(\boldmath f)+4. The first one is an analogue of Gagliardo semi-norm of \boldmath f in the fractional Sobolev space H1/2. This implies the natural domain of M is H3/2H1,, which was shown by Blatt. The integrand of second one has the determinant structure, which shows a cancellation of integrand.

The energy M is invariant under the Möbius transformations. We discuss the Möbius invariance of each Mi's.

Antje Vandenberg

Max-Planck-Institut für Mathematik in den Naturwissenschaften Contact via Mail

Simon Blatt

Karlsruher Institut für Technologie

Philipp Reiter

Universität Duisburg-Essen

Armin Schikorra

Max-Planck-Institut für Mathematik in den Naturwissenschaften