Down to characteristic p and then back up again: computations with the p-adic obstruction map

  • Emre Sertöz (University Hannover)
Live Stream


Although extremely simple, Gauss' modular arithmetic is a powerful idea in working with the integers. There is a direct application of this idea in algebraic geometry, where one ""reduces"" a variety modulo an integer. A major undertaking in the second half of the previous century linked topological aspects of the original variety to point counts of its reduction. One can go a little further and carry the analytical properties of the original variety over to its reduction. This gives a refined sense about which subvarieties of the reduction lift back up to the original variety. I will report on joint work with Edgar Costa where we implemented this idea, but mostly, I will give a friendly introduction to the basic concepts.


17.03.20 21.02.22

Nonlinear Algebra Seminar Online (NASO)

MPI for Mathematics in the Sciences Live Stream

Katharina Matschke

MPI for Mathematics in the Sciences Contact via Mail