Front Propagation in Sharp and Diffuse Interface Models of Stratified Media

  • Cyrill Muratov (New Jersey Institute of Technology, Newark, Germany)
A3 01 (Sophus-Lie room)


We study front propagation problems for forced mean curvature flows and their phase field variants that take place in stratified media, i.e., heterogeneous media whose characteristics do not vary in one direction. We consider phase change fronts in infinite cylinders whose axis coincides with the symmetry axis of the medium. Using the recently developed variational approaches, we provide a convergence result relating asymptotic in time front propagation in the diffuse interface case to that in the sharp interface case for suitably balanced nonlinearities of Allen-Cahn type. The result is established by using Γ-convergence type arguments to obtain a correspondence between the minimizers of an exponentially weighted Ginzburg-Landau-type functional and the minimizers of an exponentially weighted area-type functional. These minimizers yield the fastest moving traveling waves in the respective models and determine the asymptotic propagation speeds for front-like initial data. We further show that generically these fronts are the exponentially stable global attractors for this kind of initial data and give sufficient conditions under which complete phase change occurs via the formation of the considered fronts. This is joint work with A. Cesaroni and M. Novaga.

Katja Heid

MPI for Mathematics in the Sciences Contact via Mail

Upcoming Events of This Seminar

  • Mar 12, 2024 tba with Theresa Simon
  • Mar 26, 2024 tba with Phan Thành Nam
  • Mar 26, 2024 tba with Dominik Schmid
  • May 7, 2024 tba with Manuel Gnann
  • May 14, 2024 tba with Barbara Verfürth
  • May 14, 2024 tba with Lisa Hartung
  • Jun 25, 2024 tba with Paul Dario
  • Jul 16, 2024 tba with Michael Loss