Search

Talk

Generalization Bounds via Convex Analysis

  • Gergely Neu (Universitat Pompeu Fabra, Barcelona)
Live Stream

Abstract

Since the celebrated works of Russo and Zou (2016, 2019) and Xu and Raginsky (2017), it has been well known that the generalization error of supervised learning algorithms can be bounded in terms of the mutual information between their input and the output, given that the loss of any fixed hypothesis has a subgaussian tail. In this work, we generalize this result beyond the standard choice of Shannon's mutual information to measure the dependence between the input and the output. Our main result shows that it is indeed possible to replace the mutual information by any strongly convex function of the joint input-output distribution, with the subgaussianity condition on the losses replaced by a bound on an appropriately chosen norm capturing the geometry of the dependence measure. This allows us to derive a range of generalization bounds that are either entirely new or strengthen previously known ones. Examples include bounds stated in terms of p-norm divergences and the Wasserstein-2 distance, which are respectively applicable for heavy-tailed loss distributions and highly smooth loss functions. Our analysis is entirely based on elementary tools from convex analysis by tracking the growth of a potential function associated with the dependence measure and the loss function.

Links

seminar
5/2/24 5/16/24

Math Machine Learning seminar MPI MIS + UCLA

MPI for Mathematics in the Sciences Live Stream

Katharina Matschke

MPI for Mathematics in the Sciences Contact via Mail

Upcoming Events of This Seminar