Graph rigidity and measurement varieties

  • Louis Theran (University of St. Andrews)
Live Stream


Geometric rigidity theory is concerned with how much information about a configuration p of n points in a d-dimensional Euclidean space is determined by pairwise Euclidean distance measurements, indexed by the edges of a graph G with n vertices. One can turn this around, and, define, for a fixed graph G, a “measurement variety" associated with all possible edge lengths measurements as the configuration varies. I’ll survey some (somewhat) recent results in geometric rigidity obtained by studying the geometry of measurement varieties.


3/17/20 2/21/22

Nonlinear Algebra Seminar Online (NASO)

MPI for Mathematics in the Sciences Live Stream

Katharina Matschke

MPI for Mathematics in the Sciences Contact via Mail