Search

Workshop

Identifying Disease Subtypes from Complex Medical Data

  • Tobias Elze (Harvard Medical School, Boston, USA)
E1 05 (Leibniz-Saal)

Abstract

Many contemporary fields of medicine produce increasingly high-dimensional data. "Traditional" data analysis methods trained in clinical research education are insufficient to investigate such highly complex data. Therefore, various machine learning techniques are increasingly finding their way into medical data analysis. However, disease diagnosis itself has traditionally been defined on simple rules based on easily observable low-dimensional data. Traditional clinical diagnoses can therefore be inappropriate as ground truths to train machine learning classifiers. Here, using the eye disease of glaucoma as an example, we demonstrate how patterns identified by unsupervised machine learning on complex medical data can help to refine and quantitatively re-define disease diagnosis. Our patterns of vision loss due to glaucoma enable a whole field of quantitative research which was not available by previously existing diagnostic approaches.

Links

conference
5/16/22 5/25/22

Mathematical Concepts in the Sciences and Humanities

MPI für Mathematik in den Naturwissenschaften Leipzig (Leipzig) E1 05 (Leibniz-Saal) Live Stream

Katharina Matschke

Max Planck Institute for Mathematics in the Sciences, Germany Contact via Mail

Nihat Ay

Hamburg University of Technology, Germany and Santa Fe Institute

Eckehard Olbrich

Max Planck Institute for Mathematics in the Sciences, Germany

Felix Otto

Max Planck Institute for Mathematics in the Sciences, Germany

Bernd Sturmfels

Max Planck Institute for Mathematics in the Sciences, Germany