Search
Talk

Interaction energy of domain walls in a nonlocal Ginzburg-Landau type model from micromagnetics

  • Radu Ignat (Université Paul Sabatier, Toulouse)
A3 01 (Sophus-Lie room)

Abstract

We present a variational model from micromagnetics involving a nonlocal Ginzburg-Landau type energy for S^1-valued vector fields. These vector fields form domain walls, called Neel walls, that correspond to one-dimensional transitions between two directions within the unit circle S^1. Due to the nonlocality of the energy, a Neel wall is a two length scale object, comprising a core and two logarithmically decaying tails. Our aim is to determine the energy differences leading to repulsion or attraction between Neel walls. In contrast to the usual Ginzburg-Landau vortices, we obtain a renormalised energy for Neel walls that shows both a tail-tail interaction and a core-tail interaction. This is a novel feature for Ginzburg-Landau type energies that entails attraction between Neel walls of the same sign and repulsion between Neel walls of opposite signs. This is a joint work with Roger Moser (University of Bath).

Katja Heid

MPI for Mathematics in the Sciences Contact via Mail

Upcoming Events of This Seminar

  • Mar 12, 2024 tba with Theresa Simon
  • Mar 26, 2024 tba with Phan Thành Nam
  • Mar 26, 2024 tba with Dominik Schmid
  • May 7, 2024 tba with Manuel Gnann
  • May 14, 2024 tba with Barbara Verfürth
  • May 14, 2024 tba with Lisa Hartung
  • Jun 25, 2024 tba with Paul Dario
  • Jul 16, 2024 tba with Michael Loss