Inverse problems for real principal type operators

  • Mikko Salo (University of Jyväskylä)
A3 01 (Sophus-Lie room)


Inverse problems research concentrates on the mathematical theory and practical implementation of indirect measurements. Applications are found in numerous research fields involving scientific, medical or industrial imaging; familiar examples include X-ray computed tomography and ultrasound imaging. Inverse problems have a rich mathematical theory employing modern methods in partial differential equations (PDEs), harmonic analysis, and differential geometry.

In this talk we outline a recent approach to develop general theory for inverse problems for PDEs (real principal type equations in particular). The work presents a unified point of view to inverse boundary value problems for transport and wave equations, and highlights the role of propagation of singularities in the solution of related inverse problems.

This is joint work with Lauri Oksanen (UCL), Plamen Stefanov (Purdue) and Gunther Uhlmann (Washington / IAS HKUST).

Katja Heid

MPI for Mathematics in the Sciences Contact via Mail

Upcoming Events of This Seminar

  • Mar 12, 2024 tba with Theresa Simon
  • Mar 26, 2024 tba with Phan Thành Nam
  • Mar 26, 2024 tba with Dominik Schmid
  • May 7, 2024 tba with Manuel Gnann
  • May 14, 2024 tba with Barbara Verfürth
  • May 14, 2024 tba with Lisa Hartung
  • Jun 25, 2024 tba with Paul Dario
  • Jul 16, 2024 tba with Michael Loss