Numerical stochastic homogenization by quasilocal effective diffusion tensors

  • Dietmar Gallistl (University of Twente)
A3 01 (Sophus-Lie room)


This talk proposes a numerical upscaling procedure for elliptic boundary value problems with diffusion tensors that vary randomly on small scales.

The method compresses the random partial differential operator to an effective quasilocal deterministic operator that represents the expected solution on a coarse scale of interest. Error estimates consisting of a priori and a posteriori terms are provided that allow one to quantify the impact of uncertainty in the diffusion coefficient on the expected effective response of the process.

Katja Heid

MPI for Mathematics in the Sciences Contact via Mail

Upcoming Events of This Seminar

  • Mar 12, 2024 tba with Theresa Simon
  • Mar 26, 2024 tba with Phan Thành Nam
  • Mar 26, 2024 tba with Dominik Schmid
  • May 7, 2024 tba with Manuel Gnann
  • May 14, 2024 tba with Barbara Verfürth
  • May 14, 2024 tba with Lisa Hartung
  • Jun 25, 2024 tba with Paul Dario
  • Jul 16, 2024 tba with Michael Loss