Talk

On the optimal weak transfer plan

  • Yan Shu (Université Paris Ouest Nanterre)
A3 01 (Sophus-Lie room)

Abstract

We study an optimal weak transport cost related to the notion of convex order between probability measures. On the real line, we show a link between Kantorovich duality and the permutation polytope by characterizing the transfer plan in two different ways. We prove that this weak transport cost is reached for a coupling that does not depend on the underlying cost function. As an application, we give a characterization for convex modified log sobolev inequality and a class of weak transport-entropy inequalities.

This talk contains results of a join work with N. Gozlan, C. Roberto, P-M. Samson and P. Tetali, and a join work of M. Strzelecki.

Upcoming Events of this Seminar

  • Monday, 14.07.25 tba with Alexandra Holzinger
  • Tuesday, 15.07.25 tba with Anna Shalova
  • Tuesday, 12.08.25 tba with Sarah-Jean Meyer
  • Friday, 15.08.25 tba with Thomas Suchanek
  • Friday, 22.08.25 tba with Nikolay Barashkov
  • Friday, 29.08.25 tba with Andreas Koller