Out-of-equilibrium phenomena, stochastic PDEs and Gaussian limits

  • Fabio Toninelli (Technical University of Vienna)
E1 05 (Leibniz-Saal)


I will report on mathematical progress on certain (non-linear, singular) stochastic PDEs that model the mesoscopic behaviour of some out-of-equilibrium physical systems, most notably stochastic interface growth and driven diffusive systems. Namely, the d-dimensional Stochastic Burgers equation and the KPZ equation. Scaling and Renormalization Group arguments suggest that, above the critical dimension d=2, the large-scale behaviour should be Gaussian. Our results (joint works with Cannizzaro, Erhard, Gubinelli) imply, indeed, Gaussian scaling limits in dimension d\ge 3 (for the stochastic Burgers equation) and also, at least in the regime of weak non-linearity, in the critical dimension d=2 (both for stochastic Burgers and for the Anisotropic KPZ equation). The weak non-linearity limit will be discussed in much more detail in Giuseppe's talk

Katja Heid

MPI for Mathematics in the Sciences Contact via Mail

Upcoming Events of this Seminar