Search

Workshop

Quantum Superposition of Massive Objects and the Quantization of Gravity

  • Alessio Belenchia (IQOQI-Vienna, Wien, Austria)
E1 05 (Leibniz-Saal)

Abstract

In this talk we analyse a gedankenexperiment, previously considered in the literature, which involves quantum superpositions of charged and/or massive bodies. In the electromagnetic case, we show that the quantization of electromagnetic radiation and vacuum fluctuations of the electromagnetic field both are essential for avoiding apparent paradoxes with causality and complementarity. We then analyze the gravitational version of this gedankenexperiment which was not correctly analyzed in the previous literature. We show that the analysis of the gravitational case is in complete parallel with the electromagnetic case provided that gravitational radiation is quantized and that vacuum fluctuations limit the localization of a particle to no better than a Planck length. This provides support for the view that (linearized) gravity should have a quantum field description, a relevant result in view of the growing interest in proposals for table-top experiments probing gravity-induce entanglement.

Antje Vandenberg

Max Planck Institute for Mathematics in the Sciences (Leipzig), Germany Contact via Mail

Felix Finster

University of Regensburg, Germany

Domenico Giulini

University of Hanover, Germany

Jürgen Jost

Max Planck Institute for Mathematics in the Sciences (Leipzig), Germany

Johannes Kleiner

University of Hanover, Germany

Jürgen Tolksdorf

Max Planck Institute for Mathematics in the Sciences (Leipzig), Germany