Search

Workshop

Random maps and 2-dimensional random geometries

  • Grégory Miermont (Université Paris-Sud, Orsay, France)
E1 05 (Leibniz-Saal)

Abstract

A map is a gluing of a finite number of polygons, forming a connected orientable topological surface. It can be interpreted as assigning this surface a discrete geometry, and the theoretical physics literature in the 80-90’s argued that random maps are an appropriate discrete model for the theory of 2-dimensional quantum gravity, which involves ill-defined integrals over all metrics on a given surface. The idea is to replace these integrals by finite sums, for instance over all triangulation of the sphere with a large number of faces, hoping that such triangulations approximate a limiting "continuum random surface".

In the recent years, much progress has been made in the mathematical understanding of the latter problem. In particular, it is now known that many natural models of random planar maps, for which the faces degrees remain small, admit a universal scaling limit, the Brownian map.

Other models, favorizing large faces, also admit a one-parameter family of scaling limits, called stable maps. The latter are believed to describe the asymptotic geometry of random maps carrying statistical physics models, as has now been established in some important cases (including the so-called rigid O(n) model on quadrangulations).

Katja Heid

Max Planck Institute for Mathematics in the Sciences Contact via Mail

Jörg Lehnert

Max-Planck-Institut für Mathematik in den Naturwissenschaften Contact via Mail

Wolfgang Hackbusch

Max Planck Institute for Mathematics in the Sciences

Jürgen Jost

Max-Planck-Institut für Mathematik in den Naturwissenschaften

Felix Otto

Max-Planck-Institut für Mathematik in den Naturwissenschaften

Erwin Bolthausen

Universität Zürich