Search

Workshop

Regularization by noise for scalar conservation laws

  • Mario Maurelli (TU + WIAS Berlin)
E1 05 (Leibniz-Saal)

Abstract

Joint work with Benjamin Gess

We say that a regularization by noise phenomenon occurs for a possibly ill-posed differential equation if this equation becomes well-posed (in a pathwise sense) under addition of noise. Most of the results in this direction are limited to SDEs and associated linear SPDEs.

In this talk, we show a regularization by noise result for a nonlinear SPDE, namely a stochastic scalar conservation law on $\mr^d$ with a space-irregular flux: \begin{equation*} \partial_t v +b\cdot\nabla[v^2] +\nabla v\circ \dot{W} =0, \end{equation*} where $b=b(x)$ is a given deterministic, possibly irregular vector field, $W$ is a $d$-dimensional Brownian motion ($\circ$ denotes Stratonovich integration) and $v=v(t,x,\omega)$ is the scalar solution. More precisely we prove that, under suitable Sobolev assumptions on $b$ and integrability assumptions on its divergence, the equation admits a unique entropy solution. The result is false without noise.

The proof of uniqueness is based on a careful combination of arguments used in the linear case: first we show the renormalization property for the kinetic formulation of the equation, then we use second order PDE estimates and a duality argument to conclude.

If time permits, we will discuss also some open questions.

Links

Katja Heid

Max Planck Institute for Mathematics in the Sciences Contact via Mail

Peter Friz

Technische Universität Berlin

Benjamin Gess

Max-Planck-Institut für Mathematik in den Naturwissenschaften