Search
Talk

Rough paths and random dynamical systems

  • Sebastian Riedel (TU Berlin)
A3 01 (Sophus-Lie room)

Abstract

We aim to study the long time behaviour of the solution to a rough differential equation (in the sense of Lyons) driven by a random rough path. To do so, we use the theory of random dynamical systems. In a first step, we show that rough differential equations naturally induce random dynamical systems, provided the driving rough path has stationary increments. If the equation satisfies a strong form of stability, we can show that the solution admits an invariant measure.

This is joint work with I. Bailleul (Rennes) and M. Scheutzow (Berlin).

Katja Heid

MPI for Mathematics in the Sciences Contact via Mail

Upcoming Events of This Seminar

  • Mar 12, 2024 tba with Theresa Simon
  • Mar 26, 2024 tba with Phan Thành Nam
  • Mar 26, 2024 tba with Dominik Schmid
  • May 7, 2024 tba with Manuel Gnann
  • May 14, 2024 tba with Barbara Verfürth
  • May 14, 2024 tba with Lisa Hartung
  • Jun 25, 2024 tba with Paul Dario
  • Jul 16, 2024 tba with Michael Loss