Search
Talk

Spectral homogenization vs. localization in the random conductance model

  • Franziska Flegel (WIAS Berlin)
A3 01 (Sophus-Lie room)

Abstract

We study the asymptotic behavior of the top eigenvectors and eigenvalues of the random conductance Laplacian in a large domain of $\mathbb{Z}^d$ ($d\geq 2$) with zero Dirichlet conditions. Let the conductances $w$ be positive i.i.d. random variables, which fulfill certain regularity assumptions near zero. Then we show that the spectrum of the Laplacian displays a sharp transition between a completely localized and a completely homogenized phase. A simple moment condition distinguishes between the two phases.

In the homogenized phase we can even generalize our results to stationary and ergodic conductances with additional jumps of arbitrary length. Here, our proofs are based on a compactness result for the Laplacian's Dirichlet energy, Poincar\'e inequalities, Moser iteration and two-scale convergence.

The investigation of the homogenized phase is joint work with M. Slowik and M. Heida.

Katja Heid

MPI for Mathematics in the Sciences Contact via Mail

Upcoming Events of This Seminar

  • Mar 11, 2024 tba with Carlos Román Parra
  • Mar 15, 2024 tba with Esther Bou Dagher