The $f \longleftrightarrow \tilde f$ correspondence and its applications in quantum information theory
- Paolo Gibilisco (Università degli Studi di Roma "Tor Vergata", Italy)
Abstract
Let ${\cal F}_{op}$=\{symmetric, normalized, operator monotone functions\}. If we set \[ {\cal F}^{\, r}_{op}:=\{f \in {\cal F}_{op} | f(0)>0 \}, \qquad \qquad {\cal F}^{\, n}_{op}:=\{f \in {\cal F}_{op} | f(0)=0 \}, \] trivially it holds $$ {\cal F}_{op}={\cal F}^{\, r}_{op} \, \dot\cup \, {\cal F}^{\, n}_{op}. $$ Define \[ \tilde{f}(x):=\frac{1}{2}\left[ (x+1)-(x-1)^2 \frac{f(0)}{f(x)} \right]\qquad x>0. \] It is possible to prove that the map $f \to \tilde f,$ is a bijection from ${\cal F}^{\, r}_{op}$ to ${\cal F}^{\, n}_{op}$, namely a bijection between regular and non-regular functions.
In the last years a number of consequences has been derived from this fact: 1) the dynamical uncertainty principle; 2) its generalization to von Neumann algebras; 3) a new proof of the fact that the Wigner-Yanase-Dyson is an example of a quantum Fisher information; 4) a new proof the monotonicity property for the WYD information; 5) a link between quantum relative entropy and metric adjusted skew information.
The purpose of my talk is to describe the above applications.
- Andai, A., Uncertainty principle with quantum Fisher information, J. Math. Phys. 49 (2008), 012106.
- Audenaert, K., Cai, L. and Hansen, F., Inequalities for quantum skew information, Lett. Math. Phys., 85: 135--146, 2008.
- Gibilisco, P., Hansen, F. and Isola T., On a correspondence between regular and non-regular operator monotone functions. Linear Algebra Appl., 430: 2225-2232, 2009.
- Gibilisco, P., Hiai F. and Petz, D., Quantum covariance, quantum Fisher information and the uncertainty relations. IEEE Trans. Inform. Theory, 55: 439-443, 2009.
- Gibilisco, P. and Isola, T., A dynamical uncertainty principle in von Neumann algebras by operator monotone functions. J. Stat. Phys., 132: 937--944, 2008.
- Luo, S., Quantum Fisher information and uncertainty relations. Lett. Math. Phys. 53: 243--251, 2000.
- Petz, D. and Szabó, V. E. S., From quasi-entropy to skew information. International J. Math., 20:1421--1430, 2009.