The Hopf algebra of symmetric functions

  • Peter Jarvis (University of Tasmania, School of Mathematics and Physics, Australia)
A3 01 (Sophus-Lie room)


The talk will survey standard symmetric function theory, with emphasis on the underlying Hopf algebra(s). It will be shown how, in combination with Sweedler's cohomology and natural Laplace pairings, these are able to unify several structural aspects of symmetric functions and generalisations. Applications to group branching rules, combinatorics and quantum physics are suggested.

Joint work with B Fauser (MPI), math-ph/0308043

Katharina Matschke

MPI for Mathematics in the Sciences Contact via Mail