Weak coupling limit for polynomial stochastic Burgers equations in $2d$

  • Da Li (FU Berlin)
E1 05 (Leibniz-Saal)


We explore the weak coupling limit for stochastic Burgers type equation in critical dimension, and show that it is given by a Gaussian stochastic heat equation, with renormalised coefficient depending only on the second order Hermite polynomial of the nonlinearity. We use the approach of Cannizzaro, Gubinelli and Toninelli (2024), who treat the case of quadratic nonlinearities, and we extend it to polynomial nonlinearities. In that sense, we extend the weak universality of the KPZ equation shown by Hairer and Quastel (2018) to the two dimensional generalized stochastic Burgers equation. A key new ingredient is the graph notation for the generator. This enables us to obtain uniform estimates for the generator. This is joint work with Nicolas Perkowski.

Katja Heid

MPI for Mathematics in the Sciences Contact via Mail

Upcoming Events of this Seminar