Search

conference
09.08.19

Computing with D-Modules

The theory of algebraic D-modules is concerned with the algebraic study of linear partial differential equations with polynomial coefficients. This offers a useful representation for many special functions arising in the mathematical sciences (e.g. statistics, geometry, or physics). The manipulation of this representation relies on the use of Groebner bases in the Weyl algebra. This event is part of a series of seminars on D-modules with emphasis on computations and applications.

Participants

Michael Adamer

University of Oxford/MPI Leipzig

Judith Brinkschulte

Universität Leipzig

Turku Ozlum Celik

MPI MIS

Ferran Dachs Cadefau

Martin-Luther-Universität Halle-Wittenberg

Eliana Duarte

MPI MIS

Luca Giovenzana

TU Chemnitz

Franco Giovenzana

TU Chemnitz

Paul Görlach

MPI MIS

Melanie Harms

RWTH Aachen

Alex Heaton

MPI MiS

Asgar Jamneshan

UCLA

Youshua Kesting

Humboldt University Berlin

Thomas Krämer

HU Berlin

Christian Lehn

TU Chemnitz

Viktor Levandovskyy

RWTH Aachen

András Lőrincz

MPI MIS

Yue Ren

Max Planck Institute MiS Leipzig

Michael Ruddy

MPI-MIS

Floris Ruijter

Humboldt Universitaet zu Berlin

Anna-Laura Sattelberger

MPI MIS

Emre Can Sertöz

MPI MiS

Miruna-Stefana Sorea

Max-Planck-Institut für Mathematik in den Naturwissenschaften

Mima Stanojkovski

MPI MiS

Bernd Sturmfels

MPI MIS

Robin van der Veer

KU Leuven

Lorenzo Venturello

MPI MIS

Charles Wang

Harvard

Scientific Organizers

Christian Lehn

Technische Universität Chemnitz

Bernd Sturmfels

Max-Planck-Institut für Mathematik in den Naturwissenschaften

Administrative Contact

Saskia Gutzschebauch

Max-Planck-Institut für Mathematik in den Naturwissenschaften Contact via Mail