Search
conference
03/09/2019 03/09/2019

Computing with D-Modules II

The theory of algebraic D-modules is concerned with the algebraic study of linear partial differential equations with polynomial coefficients. This offers a useful representation for many special functions arising in the mathematical sciences (e.g. statistics, geometry, or physics). The manipulation of this representation relies on the use of Groebner bases in the Weyl algebra. This event is part of a series of seminars on D-modules with emphasis on computations and applications.

Program

Sep 3, 2019
09:30 - 10:30 Christoph Koutschan (Johann Radon Institute for Computational and Applied Mathematics, Linz, Austria)
10:30 - 11:00
11:00 - 12:00
12:00 - 13:45
13:45 - 14:35 Anna-Laura Sattelberger (Max-Planck-Institut für Mathematik in den Naturwissenschaften, Leipzig, Germany)
14:50 - 15:40 Christian Sevenheck (Technische Universität Chemnitz, Chemnitz)
15:40 - 16:10
16:10 - 17:00 Yairon Cid Ruiz (Max Planck Institute for Mathematics in the Sciences)
17:10 - 18:00 András Lőrincz (Max Planck Institute for Mathematics in the Sciences, Germany)
18:30 - 00:00

Participants

Valeria Bertini

University of Strasbourg

Judith Brinkschulte

Universität Leipzig

Dominic Bunnett

TU Berlin

Ferran Dachs Cadefau

Martin-Luther-Universität Halle-Wittenberg

Franco Giovenzana

Chemnitz University of Technology

Luca Giovenzana

Chemnitz University of Technology

Paul Görlach

Max Planck Institute MiS Leipzig

Alexander Heaton

MPI MiS

Christoph Koutschan

Johann Radon Institute for Computational and Applied Mathematics

Thomas Krämer

Humboldt Universität zu Berlin

Christian Lehn

TU Chemnitz

András Lőrincz

Max Planck Institute for Mathematics in the Sciences

Marc Mezzarobba

CNRS, Sorbonne University

Margaret Regan

University of Notre Dame

Floris Ruijter

Humboldt Universität zu Berlin

Yairon Cid Ruiz

Max Planck Institute for Mathematics in the Sciences

Anna-Laura Sattelberger

Max-Planck-Institut für Mathematik in den Naturwissenschaften

Emre Sertöz

Max Planck Institute MiS

Christian Sevenheck

Technische Universität Chemnitz

Mima Stanojkovski

MPI MiS

Bernd Sturmfels

Max Planck Institute for Mathematics in the Sciences

Scientific Organizers

Anna-Laura Sattelberger

Max-Planck-Institut für Mathematik in den Naturwissenschaften

Christian Sevenheck

Technische Universität Chemnitz

Administrative Contact

Saskia Gutzschebauch

Max-Planck-Institut für Mathematik in den Naturwissenschaften Contact via Mail