We have decided to discontinue the publication of preprints on our preprint server end of 2024. The publication culture within mathematics has changed so much due to the rise of repositories such as ArXiV (www.arxiv.org) that we are encouraging all institute members to make their preprints available there. An institute's repository in its previous form is, therefore, unnecessary. The preprints published to date will remain available here, but we will not add any new preprints here.
In this paper we prove a conjecture of A. Katok, stating that on a compact rank 1 manifold there exists a uniquely determined measure of maximal entropy. This generalizes previous work of R. Bowen and G. Margulis. As an application we show that the exponential growth rate of the singular closed geodesics is strictly smaller than the topological entropy.