MiS Preprint Repository

We have decided to discontinue the publication of preprints on our preprint server as of 1 March 2024. The publication culture within mathematics has changed so much due to the rise of repositories such as ArXiV ( that we are encouraging all institute members to make their preprints available there. An institute's repository in its previous form is, therefore, unnecessary. The preprints published to date will remain available here, but we will not add any new preprints here.

MiS Preprint

Averaging of trajectory attractors of evolution equations with rapidly oscillating terms

Marko Vishik and Vladimir Chepyzhov


We consider evolution equations with terms which oscillate rapidly with respect to spatial or time variables. We prove that the trajectory attractors of these equations tend to the trajectory attractors of equations whose terms are the averages of the corresponding terms of the initial equations. We do not assume that the corresponding Cauchy problems are uniquely solvable. At the same time if the Cauchy problems for the equations under consideration have unique solution, then they generate semigroups having global attractors. These global attractors also converge to the global attractors of the averaged equations in the corresponding space.

We apply these results to the following equations and systems of mathematical physics: the 3D and 2D Navier-Stokes systems with rapidly oscillationg external forces, the reaction-diffusion systems, the complex Ginzburg-Landau equation, the generalized Chafee-Infante equation, the dissipative hyperbolic equations with rapidly oscillating terms and coefficients.


Related publications

2000 Repository Open Access
Marko I. Vishik and Vladimir Chepyzhov

Averaging of trajectory attractors of evolution equations with rapidly oscillating terms

In: Matematiceskij sbornik, 129 (2000) 1, pp. 13-50