Delve into the future of research at MiS with our preprint repository. Our scientists are making groundbreaking discoveries and sharing their latest findings before they are published. Explore repository to stay up-to-date on the newest developments and breakthroughs.
MiS Preprint
73/2000
The n-Centre Problem of Celestial Mechanics
Andreas Knauf
Abstract
We consider the classical three-dimensional motion in a potential which is the sum of n attracting or repelling Coulombic potentials. Assuming a non-collinear configuration of the n centres, we find a universal behaviour for all energies E above a positive threshold.
Whereas for n=1 there are no bounded orbits, and for n=2 there is just one closed orbit, for n >= 3 the bounded orbits form a Cantor set. We analyze the symbolic dynamics and estimate Hausdorff dimension and topological entropy of this hyperbolic set.
Then we set up scattering theory, including symbolic dynamics of the scattering orbits and differential cross section estimates.
The theory includes the n-centre problem of celestial mechanics, and prepares for a geometric understanding of a class of restricted n-body problems.
To allow for applications in semiclassical molecular scattering, we include an additional (electronic) potential which is arbitrary except its Coulombic decay at infinity. Up to a (optimal) relative error of order 1/E, all estimates are independent of that smooth potential but only depend on the relative positions and strengths of the centres.
Finally we show that different, non-universal, phenomena occur for collinear configurations.