MiS Preprint Repository

We have decided to discontinue the publication of preprints on our preprint server as of 1 March 2024. The publication culture within mathematics has changed so much due to the rise of repositories such as ArXiV ( that we are encouraging all institute members to make their preprints available there. An institute's repository in its previous form is, therefore, unnecessary. The preprints published to date will remain available here, but we will not add any new preprints here.

MiS Preprint

Droplet spreading: intermediate scaling law by PDE methods

Lorenzo Giacomelli and Felix Otto


We consider the spreading of a thin droplet of viscous liquid on a plane surface driven by capillarity. The standard lubrication approximation leads to an evolution equation for the film height h - which is ill-posed when the spreading is limited by the no-slip boundary condition at the liquid-solid interface, due to a singularity at the moving contact line. The most common relaxation of the no-slip boundary condition removes this singularity but introduces a new physical length scale: the slippage length b. It is believed that this microscopic length scale only enters logarithmically in the effective (that is, macroscopic) spreading behavior.

In this paper, we rigorously show that the naively expected spreading rate is indeed only altered by a logarithmic term involving b. More precisely, we prove a scaling law for the diameter of the apparent (that is, macroscopic) support of the droplet in time. This is an intermediate scaling law: It takes an initial layer to "forget" the initial droplet shape - whereas after a long time, the droplet is so thin that its spreading is governed by the physics on the scale b.

Our proof works by deriving suitable estimates for physically relevant integral quantities: the free energy, the length of the apparent support and their respective rates of change. As opposed to matched asymptotic methods, this PDE approach closely mimics a simple heuristic argument based on the gradient flow structure.

MSC Codes:
35B99, 35K30, 35K55, 35K65, 76D08
intermediate scaling laws, qualitative behavior, higher order nonlinear degenerate parabolic equations, thin film, slip condition, lubrication theory

Related publications

2002 Repository Open Access
Lorenzo Giacomelli and Felix Otto

Droplet spreading : intermediate scaling law by PDE methods

In: Communications on pure and applied mathematics, 55 (2002) 2, pp. 217-254