We have decided to discontinue the publication of preprints on our preprint server as of 1 March 2024. The publication culture within mathematics has changed so much due to the rise of repositories such as ArXiV (www.arxiv.org) that we are encouraging all institute members to make their preprints available there. An institute's repository in its previous form is, therefore, unnecessary. The preprints published to date will remain available here, but we will not add any new preprints here.
MiS Preprint
94/2001
Covariant theory of asymptotic symmetries, conservation laws and central charges
Glenn Barnich and Friedemann Brandt
Abstract
Under suitable assumptions on the boundary conditions, it is shown that there is a bijective correspondence between equivalence classes of asymptotic reducibility parameters and asymptotically conserved n-2 forms in the context of Lagrangian gauge theories.
The asymptotic reducibility parameters can be interpreted as asymptotic Killing vector fields of the background, with asymptotic behaviour determined by a new dynamical condition. A universal formula for asymptotically conserved n-2 forms in terms of the reducibility parameters is derived.
Sufficient conditions for finiteness of the charges built out of the asymptotically conserved n-2 forms and for the existence of a Lie algebra g among equivalence classes of asymptotic reducibility parameters are given.
The representation of g in terms of the charges may be centrally extended. An explicit and covariant formula for the central charges is constructed. They are shown to be 2-cocycles on the Lie algebra g. The general considerations and formulas are applied to electrodynamics, Yang-Mills theory and Einstein gravity.