MiS Preprint Repository

We have decided to discontinue the publication of preprints on our preprint server as of 1 March 2024. The publication culture within mathematics has changed so much due to the rise of repositories such as ArXiV ( that we are encouraging all institute members to make their preprints available there. An institute's repository in its previous form is, therefore, unnecessary. The preprints published to date will remain available here, but we will not add any new preprints here.

MiS Preprint

Studying nonlinear pde by geometry in matrix space

Bernd Kirchheim, Stefan Müller and Vladimír Šverák


We outline an approach to study the properties of nonlinear partial differential equations through the geometric properties of a set in the space of $m \times n$ matrices which is naturally associated to the equation. In particular, different notions of convex hulls play a crucial role.

This work draws heavily on Tartar's work on oscillations in nonlinear pde and compensated compactness and on Gromov's work on partial differential relations and convex integration. We point out some recent successes of this approach and outline a number of open problems, most of which seem to require a better geometric understanding of the different convexity notions.

MSC Codes:
35J45, 35F30, 35D05, 49J40
nonlinear partial differential equations, convex integration, microstructure, convex hulls

Related publications

2003 Repository Open Access
Bernd Kirchheim, Stefan Müller and Vladimír Šverák

Studying nonlinear pde by geometry in matrix space

In: Geometric analysis and nonlinear partial differential equations / Stefan Hildebrandt (ed.)
Berlin [u.a.] : Springer, 2003. - pp. 347-395