Delve into the future of research at MiS with our preprint repository. Our scientists are making groundbreaking discoveries and sharing their latest findings before they are published. Explore repository to stay up-to-date on the newest developments and breakthroughs.
MiS Preprint
76/2002
Continuum Limits of Particles Interacting via Diffusion
Nicholas Alikakos, Giorgio Fusco and Georgia Karali
Abstract
We consider a two phase system mainly in 3 dimensions and we examine the coarsening of the spatial distribution, driven by the reduction of interface energy and limited by diffusion as described by the quasi static Stefan free boundary problem. Under the appropriate scaling we pass rigorously to the limit by taking into account the motion of the centers and the deformation of the spherical shape. We distinguish between two different cases and we derive the classical mean field model and another continuum limit corresponding to critical density which can be related to a continuity equation obtained recently by Niethammer and Otto.
So, the theory of Lifschitz-Slyosov and Wagner is improved by taking into account the geometry of the spatial distribution.